Developed by scientists in Wales and Spain, the tool can reportedly spot if somebody has filed a fake police statement based on the text included in the document.
Using automatic text analysis and advanced machine learning techniques, the tool is said to have identified false robbery reports with over 80 per cent accuracy.
The tool has now been rolled out across Spain to help support police officers and indicate where further investigations are necessary.
VeriPol is specific to reports of robbery and can recognise patterns that are more common with false claims, such as the types of items reported stolen, finer details of incidents and descriptions of a perpetrator.
The research team, which included computer science experts from Cardiff University and Charles III University of Madrid, believe the tool could save the police time and effort by complementing traditional investigative techniques, whilst also deterring people from filing fake statements in the first place. The results of the study have been published in Knowledge-Based Systems.
VeriPol is said to be partly based on natural language processing – a branch of artificial intelligence that helps computers understand, interpret and manipulate human language. According to Cardiff University, the computer tool uses algorithms to identify and quantify various features in text, such as adjectives, acronyms, verbs, nouns, punctuation marks and numbers and figures.
Historical police reports that were known to be false have been fed through VeriPol so that it could code each one and begin to ‘learn’ the specific patterns.
An initial study of more than 1,000 police reports from the Spanish National Police showed that VeriPol was ‘extremely effective in discriminating between false and true reports’, with a success rate of more than 80 per cent.
VeriPol identified a number of themes that were common amongst false robbery reports, including: shorter statements that were more focused on the stolen property than the incident; a lack of precise detail about the incident itself; limited details of the attacker; and a lack of witnesses or other hard evidence, such as contacting a police officer or doctor straight after the incident.
“As an example, our model began to identify false statements where it was reported that incidents happened from behind or where the aggressors were wearing helmets,” co-author of the study Dr Jose Camacho-Collados, from Cardiff University’s School of Computer Science and Informatics, said.
“Similarly, other clear indicators of falsehood were descriptions of the type of objects stolen. References to iPhones and Samsung were associated with false claims, whereas bicycles and necklaces were correlated with true reports.”
VeriPol was put to task on a real-life pilot study in the urban areas of Murcia and Malaga in Spain in June 2017. In one week, 25 cases of false robbery reports were detected in Murcia, resulting in the cases being closed, and a further 39 were detected and closed in Malaga.
For comparison, over the course of eight years between 2008 and 2016, the average number of false reports detected and cases closed by police officers in the month of June was 3.33 for Murcia and 12.14 for Malaga.
After VeriPol had assigned a high probability of falsehood to the reports and the claimants were further interrogated, around 83 per cent of cases were subsequently closed.
Engineering industry reacts to Reeves' budget
I´d have to say - ´help´ - in the longer term. It is well recognised that productivity in the UK lags well behind our major industrial competitors and...