'Picocavity' focuses light below atomic scale
Material scientists and nanophotonics researchers from Cambridge University and the Centre for Materials Physics in San Sebastian, Spain, have developed a "magnifying glass" that can focus light down to the scale of single atoms.
The invention has the potential to unlock light-catalysed chemical reactions and to be used in opto-mechanical data storage devices.
Previously, it had been thought that it was not possible to focus light into a spot smaller than its wavelength. The Cambridge-led team used conductive gold nanoparticles to create an optical cavity so small that a single molecule could fit inside it; known as a "pico-cavity" by the researchers, it consists of bump in a gold nano structure the size of a single atom, and confines light to a space less than a billionth of a metre across.
Constructing the pico-cavity involved building a structure with single atom control. The Cambridge team sandwiched a layer of a self-assembling organic molecule, biphenyl-4-thiol, between a film of gold and a gold nanoparticle, with the whole assembly cooled to -260°C to reduce the speed of the atoms' motion, and used lasers to move individual atoms in the nanoparticle, and allowed them to observe the atoms’ motion in real-time.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Radio wave weapon knocks out drone swarms
Probably. A radio-controlled drone cannot be completely shielded to RF, else you´d lose the ability to control it. The fibre optical cable removes...