Michigan memristors give more cognition to computers
Machines could be taught to think like humans more efficiently with a new type of neural network made from memristors.

It is claimed the network, a so-called reservoir computing system, could predict words before they are said during conversation, and help predict future outcomes based on the present.
The research team that created the reservoir computing system, led by Wei Lu, professor of electrical engineering and computer science at the University of Michigan, recently published their work in Nature Communications.
Reservoir computing systems improve on a typical neural network's capacity and reduce the required training time. They have previously been created with larger optical components but the U-M group created their system using memristors, which require less space and can be integrated more easily into existing silicon-based electronics.
Memristors are resistive devices that can perform logic and store data, which contrasts with typical computer systems where processors perform logic separate from memory modules. In this study, Lu's team used a special memristor that memorises events only in the near history.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Radio wave weapon knocks out drone swarms
Probably. A radio-controlled drone cannot be completely shielded to RF, else you´d lose the ability to control it. The fibre optical cable removes...