On show are Phase 2 contract winners from DARPA’s Ground X-Vehicle Technologies (GXV-T) program, including Qinetiq’s electric in-hub motor which is said to give combat vehicles heightened acceleration and manoeuvrability 'with optimal torque, traction, power, and speed over rough or smooth terrain'. Shape shifting wheels also made it through to the demonstrations that were given in May, 2018 at the US Army’s Aberdeen Test Centre in Maryland.
Through GXV-T, DARPA is looking for combat vehicles that ‘could traverse up to 95 per cent of off-road terrain, including slopes and various elevations’. Included in the montage are vehicles that address crew augmentation with ‘multiple on-board sensors and technologies to provide high-resolution, 360-degree situational awareness while keeping the vehicle enclosed.’
“We’re looking at how to enhance survivability by buttoning up the cockpit and augmenting the crew through driver-assistance aids,” said Major Amber Walker, program manager for GXV-T. “For mobility, we’ve taken a radically different approach by avoiding armour and developing options to move quickly and be agile over all terrain.”
On show:
Reconfigurable Wheel-Track (RWT)
Wheels permit fast travel on hard surfaces while tracks perform better on soft surfaces. A team from Carnegie Mellon University National Robotics Engineering Center (CMU NREC) demonstrated shape-shifting wheel-track mechanisms that transition from a round wheel to a triangular track and back again while the vehicle is on the move, for instant improvements to tactical mobility and manoeuvrability on diverse terrains.
Electric In-hub Motor
Putting motors directly inside the wheels offers numerous potential benefits for combat vehicles, such as heightened acceleration and manoeuvrability with optimal torque, traction, power, and speed over rough or smooth terrain. In an earlier demonstration, Qinetiq demonstrated a unique approach, incorporating three gear stages and a complex thermal management design into a system small enough to fit a standard military 20-inch rim.
Multi-mode Extreme Travel Suspension (METS)
Pratt & Miller’s METS system aims to enable high-speed travel over rough terrain while keeping the vehicle upright and minimising occupant discomfort. The vehicle demonstrator incorporates standard military 20-inch wheels, advanced short-travel suspension of four-to-six inches, and a novel high-travel suspension that extends up to six feet – 42 inches upward and 30 inches downward. The demonstration in May showed off its ability to tackle steep slopes and grades by actively and independently adjusting the hydraulic suspension on each wheel of the vehicle.
Enhanced 360-degree Awareness with Virtual Windows
Honeywell International demonstrated its windowless cockpit in an all-terrain vehicle (ATV) with an opaque canopy. The 3-D near-to-eye goggles, optical head-tracker and wrap-around Active Window Display screens provide real-time, high-resolution views outside the vehicle. In off-road courses, drivers have completed numerous tests using the system in roughly the same time as drivers in All Terrain Vehicles (ATVs) with full visibility.
Virtual Perspectives Augmenting Natural Experience (V-PANE)
A tactical vehicle offers limited visibility and data for decision-making, especially when moving rapidly through unfamiliar territory. Raytheon BBN Technologies’ V-PANE technology demonstrator fuses data from multiple vehicle-mounted video and LIDAR cameras to create a real-time 3-D model of the vehicle and its nearby surroundings. In a final Phase 2 demonstration, drivers and commanders in a windowless recreational vehicle successfully switched among multiple virtual perspectives to accurately manoeuvre the vehicle and detect targets of interest during both low- and high-speed travel.
Off-Road Crew Augmentation (ORCA)
A second CMU NREC technology demonstration, ORCA aims to predict in real time the safest and fastest route and when necessary, enable a vehicle to drive itself off-road – even around obstacles. In Phase 2 testing, drivers using the ORCA aids and visual overlays travelled faster between waypoints and eliminated nearly all pauses to determine their routes. The team found autonomy improved either vehicle speed or risk posture, and sometimes both.
Source: DARPA
Promoted content: Does social media work for engineers – and how can you make it work for you?
So in addition to doing their own job, engineers are expected to do the marketing department´s work for them as well? Sorry, wait a minute, I know the...