The achievement was reported in Nature by a team including scientists from the US Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University.
‘We still have a number of challenges before this technology becomes practical for real-world use, but eventually it would substantially reduce the size and cost of future high-energy particle colliders for exploring the world of fundamental particles and forces,’ said Joel England, the SLAC physicist who led the experiments. ‘It could also help enable compact accelerators and X-ray devices for security scanning, medical therapy and imaging, and research in biology and materials science.’
Because it employs commercial lasers and low-cost, mass-production techniques, the researchers believe it will set the stage for new generations of so-called tabletop accelerators.
At its full potential, the new accelerator on a chip could match the accelerating power of SLAC’s two mile long linear accelerator in 100 feet, and deliver a million more electron pulses per second.
This initial demonstration achieved an acceleration gradient of 300 million electronvolts per meter. That’s roughly 10 times the acceleration provided by the current SLAC linear accelerator.
‘Our ultimate goal for this structure is one billion electronvolts per meter, and we’re already one-third of the way in our first experiment,’ said Stanford Prof Robert Byer, the principal investigator for this research.
Today’s accelerators use microwaves to boost the energy of electrons. Researchers have been looking for more economical alternatives, and this new technique, which uses ultrafast lasers to drive the accelerator, is claimed to be a leading candidate.
Particles are generally accelerated in two stages: first they are boosted to nearly the speed of light. Then any additional acceleration increases their energy, but not their speed and this, says DOE, is the challenging part.
In the accelerator-on-a-chip experiments, electrons are first accelerated to near light-speed in a conventional accelerator. Then they are focused into a half-micron-high channel within a fused silica glass chip just half a millimetre long. The channel had been patterned with precisely spaced nanoscale ridges. Infrared laser light shining on the pattern generates electrical fields that interact with the electrons in the channel to boost their energy.
Turning the accelerator on a chip into a full-fledged tabletop accelerator will require a more compact way to get the electrons up to speed before they enter the device.
A collaborating research group in Germany, led by Peter Hommelhoff at the Max Planck Institute of Quantum Optics, has been looking for such a solution. It simultaneously reports in Physical Review Letters its success in using a laser to accelerate lower-energy electrons.
Applications for these new particle accelerators would go well beyond particle physics research. Byer said in a statement that laser accelerators could drive compact X-ray free-electron lasers, comparable to SLAC’s Linac Coherent Light Source, that are all-purpose tools for a wide range of research.
Another possible application is small, portable X-ray sources to improve medical care for people injured in combat, as well as provide more affordable medical imaging for hospitals and laboratories.
Comment: Achieving the new age of electricity
"<i>There is no solution to the storage problem</i>." Incorrect. The fact is, there's <b>no</b> viable <b>EES</b> solution for bad VRE...