Twist control

UK engineers borrow from the body’s internal geometry in move which could reduce damagein oil pipelines and cut energy costs on drilling platforms.

A reduction in damage to gas and oil pipelines, and a smoother flow of solids, liquids and gases in water treatment works and chemical plants, could be achieved by copying the geometry of blood vessels, according to Heliswirl Technologies, a spin-off from

London.

The technology depends on putting a small twist in the pipes, which keeps multi-phase flow within a controllable state. Its potential to help reduce electricity consumption has won it a £600,000 investment award from backers including the Carbon Trust.

Known as small-amplitude helical technology (SMAHT), the system was devised by Colin Caro of Imperial’s department of bioengineering. Caro was studying the way blood flows through arteries. These aren’t straight, but have a slight spiral or helical geometry that sets up a swirling pattern in the blood flow.  Caro said that this prevents stagnation of solid material, such as platelets.

This is proving to be an important medical find, as these stagnant regions are prime sites for the development of cardiovascular conditions; platelet buildup kills the cells in the wall of the artery, leading to thickening of the blood vessel wall.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox