Research casts new light on cancer treatment

A chemical process that converts infrared energy into visible light could lead to improved treatment of cancer and conditions including traumatic brain injury and damaged nerves.

Columbia University scientists, in collaboration with researchers from Harvard, have succeeded in developing a chemical process to absorb infrared light and re-emit it as visible energy, allowing innocuous radiation to penetrate living tissue and other materials without the damage caused by high-intensity light exposure. Their research is published in Nature.

"The findings are exciting because we were able to perform a series of complex chemical transformations that usually require high-energy, visible light using a non-invasive, infrared light source," said Tomislav Rovis, professor of chemistry at Columbia and co-author of the study. "One can imagine many potential applications where barriers are in the way to controlling matter. For example, the research holds promise for enhancing the reach and effectiveness of photodynamic therapy, whose full potential for managing cancer has yet to be realised."

The team, including Luis M. Campos, associate professor of chemistry at Columbia, and Daniel M. Congreve of the Rowland Institute at Harvard, carried out experiments using small quantities of a novel compound that mediates the transfer of electrons between molecules that otherwise would react more slowly - or not at all – when stimulated by light.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox