Nanoscale boost for solar technology

Scientists have discovered that carrier multiplication, in which semiconductor nanocrystals respond to photons by producing multiple electrons, is applicable to a broader array of materials than previously thought.

scientists have discovered that a phenomenon called carrier multiplication, in which semiconductor nanocrystals respond to photons by producing multiple electrons, is applicable to a broader array of materials than previously thought.

The discovery means that nanoscrystals, used as solar cell materials, could produce higher electrical outputs than current solar cells.

In papers published recently in the journals Nature Physics and Applied Physics Letters, the scientists demonstrate that carrier multiplication is not unique to lead selenide nanocrystals, but also occurs with very high efficiency in nanocrystals of other compositions, such as cadmium selenide. In addition, these new results shed light on the mechanism for carrier multiplication, which is likely to occur via the instantaneous photoexcitation of multiple electrons. Such a process has never been observed in macroscopic materials.

According to Richard Schaller, a Los Alamos scientist on the team, "Our research of carrier multiplication in previous years was really focused on analysing the response of lead selenide nanocrystals to very short laser pulses. We discovered that the absorption of a single photon could produce two or even three excited electrons. We knew, somewhat instinctively, that carrier multiplication was probably not confined to lead selenide, but we needed to pursue the question."

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox