Fei Yu, a University of Cincinnati doctoral student in materials engineering, presented new findings on boosting the power conversion efficiency of polymer solar cells on March 3, at the American Physical Society Meeting in Denver.
Yu is experimenting with adding a small fraction of graphene nanoflakes to polymer-blend bulk-heterojunction solar cells to improve performance and lower costs of solar energy.
‘There has been a lot of study on how to make plastic solar cells more efficient, so they can take the place of silicon solar cells in the future,’ Yu said in a statement. ‘They can be made into thinner, lighter and more flexible panels. However, they’re currently not as efficient as silicon solar cells, so we’re examining how to increase that efficiency.’
Polymers are carbon-based materials that are more flexible than the traditional, fragile silicon solar cells. Charge transport, however, has been a limiting factor for polymer solar cell performance. Graphene, however, is a natural form of carbon with very high charge conductivity.
‘We want to maximise the energy being absorbed by the solar cell, so we are increasing the ratio of the donor to acceptor and we’re using a very low fraction of graphene to achieve that,’ said Yu.
Yu found that efficiency increased threefold by adding graphene, because the material was helping to rapidly transport charges to achieve higher photocurrent.
‘The increased performance, although well below the highest efficiency achieved in organic photovoltaic devices, is nevertheless significant in indicating that pristine graphene can be used as a charge transporter,’ he said.
Yu’s advisor, Vikram K. Kuppa, an assistant professor in the School of Energy, Environmental, Biological and Medical Engineering for the UC College of Engineering and Applied Sciences, was a contributor to the research. Kuppa is leading the research of a variety of polymer-blend solar cells involving the use of graphene.
Future research will focus on device physics, film morphology and how to control and optimise these randomly distributed graphene nanoflakes by a variety of methods to achieve better performance.
Comment: Autonomous construction requires open data standards
The UK is particularly well served with topographic data thanks to the Environment Agency´s LIDAR programs, specifically the composite digital terrain...