Better membrane
Researchers have developed a membrane that allows fuel cells to operate at low humidity and - theoretically -to operate at higher temperatures as well.

Researchers at Duke University’s Pratt School of Engineering have developed a membrane that allows fuel cells to operate at low humidity and theoretically to operate at higher temperatures.
'The current gold standard membrane is a polymer that needs to be in a humid environment in order to function efficiently, said Dr Mark Wiesner, a Duke civil engineer. 'If the polymer membrane dries out, its efficiency drops. We developed a ceramic membrane made of iron nanoparticles that works at much lower humidities.'
Because the membrane is a ceramic, it should also tolerate higher temperatures, a property that Wiesner intends to demonstrate in future experiments.
'The efficiency of current membranes drops significantly at temperatures over 190 degrees Fahrenheit,' explained Wiesner. 'However, the chemical reactions that create electricity are more efficient at high temperatures, so it would be a big improvement for fuel cell technology to make this advance.'
The membrane most commonly used today, known as Nafion, was discovered in the 1960s. As the temperature rises, the polymer becomes unstable and the membranes dehydrate, leading to a loss of performance.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Radio wave weapon knocks out drone swarms
Probably. A radio-controlled drone cannot be completely shielded to RF, else you´d lose the ability to control it. The fibre optical cable removes...