Bacteria-based biofuel

US researchers have genetically modified Escherichia coli to produce unusually long-chain alcohols that could be used as fuel.

Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have genetically modified Escherichia coli, a bacterium often associated with food poisoning, to produce unusually long-chain alcohols that could be used as fuel.

‘Previously, we were able to synthesise long-chain alcohols containing five carbon atoms,’ said James Liao, UCLA professor of chemical and biomolecular engineering. ‘We stopped at five carbons at the time because that was what could be naturally achieved. Alcohols were never synthesised beyond five carbons. Now, we've figured out a way to engineer proteins for a whole new pathway in E. coli to produce longer-chain alcohols with up to eight carbon atoms.’

The new protein and metabolic engineering method was developed by Prof Liao and his research team.

Longer-chain alcohols, with five or more carbon atoms, are easy to separate from water and are less volatile and corrosive than the commercially available biofuel ethanol. Ethanol, most commonly made from corn or sugarcane, contains only two carbon atoms.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox