researchers and their colleagues from NASA's
The team will direct and monitor Zoë, an autonomous solar-powered rover developed at Carnegie Mellon, as it travels 180 kilometres in
The results of this expedition may enable future robots to seek life on Mars, as well as enabling the discovery of new information about the distribution of life on Earth.
The search-for-life project was begun in 2003 under NASA's Astrobiology Science and Technology Program for Exploring Planets (ASTEP), which concentrates on pushing the limits of technology to study life in harsh environments.
Zoë's abilities represent the culmination of three years of work to determine the optimum design, software and instrumentation for a robot that can autonomously investigate different habitats. During the 2004 field season, Zoë exceeded scientists' expectations when it travelled 55 kilometres autonomously and detected living organisms using its onboard Fluorescence Imager (FI) to locate chlorophyll and other organic molecules.
"Our goal with this final investigation is to develop a method to create a real-time, 3D topographic 'map' of life at the microscopic level," said Nathalie Cabrol, a planetary scientist at NASA Ames and the SETI Institute who heads the science investigation aspects of the project. "This map eventually could be integrated with satellite data to create an unprecedented tool for studies of large-scale environmental activities on life in specific areas. This concept can be applied to planetary research and also on Earth to explore other extreme environments."
"This is the first time a robot is looking for life," said Carnegie Mellon associate research professor David Wettergreen, who leads the project. "We have worked with rovers and individual instruments before, but Zoë is a complete system for life seeking. We are working toward full autonomy of each day's activities, including scheduling time and resource use, control of instrument deployment and navigation between study areas.
"Last year we learned that the Fluorescence Imager can detect organisms in this environment. This year we'll be able to see how densely an area is populated with organisms and map their distribution. We intend to have the robot make as many as 100 observations and make advances in procedural developments like how to decide where to explore."
Zoë will visit a foggy coastal region, the dry Andean altiplano, and an area in the desert's arid interior that receives no precipitation for decades at a time. At these sites, the rover's activities will be guided remotely from an operations centre in
During last year's mission, the team carried out experiments using an imager able to detect fluorescence in an area underneath the rover. The FI detects signals from two fluorescent dyes that mark carbohydrates and proteins, as well as the natural fluorescence of chlorophyll.
The FI, developed by Alan Waggoner, director of the university's Molecular Biosensor and Imaging Center (MBIC), was not fully automated last year. Scientists had to follow the rover and spray dyes onto the sample area. This year, Zoë can spray a mixture of dyes for DNA, protein, lipid and carbohydrates without human intervention.
The science team uses EventScope, a remote experience browser developed by researchers at the STUDIO for Creative Inquiry in Carnegie Mellon's
During the field investigation, scientists will interact with Zoë in a science operations control room at the Remote Experience and Learning Lab in
For more information, images and field reports from the Atacama, click here.
Babcock marks next stage in submarine dismantling project
Surely on a national security project all contractors ought to be UK owned? This is similar to the life enhancement of our nuclear stations which has...