Mechanical engineers at
have demonstrated a new method for analysing the components of automotive suspension systems in work aimed at improving the performance, reducing the weight and increasing the durability of suspensions.
The researchers have shown that their method can be used to show precisely how a part's performance is changed by damage and also how its changing performance affects other parts in the suspension.
Findings are detailed in a paper being presented today during the International Mechanical Engineering Congress and Exposition in
The approach represents a potential change in how automotive suspension systems will be designed in the future, said Douglas E. Adams, an associate professor of mechanical engineering who is leading the research.
"The way it's done now is that each of the parts making up the suspension are manufactured to be as rugged as possible,"
"The problem with this approach is that some of the parts are over-engineered and heavier than they need to be because they are designed to withstand greater forces than they will encounter once they are integrated into the system. This results in a heavy suspension system that doesn't handle very well, and higher fuel and steel consumption than you would like.
"A better, more integrated approach that automakers are now pursuing is to test the entire suspension by analysing parts, not as isolated units but as interconnected components. That way, we will learn more precisely how individual parts interact with each other, and we will be able to design parts that are just as light and rugged as they need to be but not too heavy or rugged."
The integrated approach is particularly important for the design of suspension systems because one damaged part can cause heavier strain on surrounding parts. If engineers know which parts are most prone to damage, those parts can be built heavier and other parts can be made lighter, reducing the overall weight and improving the performance of the suspension.
A suspension system consists of parts such as bolts, rubber bushings, coil springs, steering mechanisms and tie rods. The method developed at Purdue senses naturally occurring vibration patterns to detect damage to components. Sensors called "tri-axial accelerometers" are attached to suspension components and are used to collect data as vibration passes through the components. The data are fed to a computer, where complex software programs interpret the information to analyse each part's performance.
Such "fault-identification" methods may not only provide information for designing better suspensions but also might be used for future "structural health monitoring" systems in cars that automatically detect damaged parts and estimate how long they will last.
When perfected, such a "systems approach" could provide a competitive edge to companies that make suspension parts. The work is funded by ArvinMeritor, which makes suspension components at its plant in
The research paper being presented this week, written by mechanical engineering doctoral student Muhammad Haroon and
"What we've shown in this particular paper is that we can detect very small changes in a part's performance when it is damaged, and we've also been able to quantify the changes, which is really significant,"
"The reason it's important to quantify the change is that, if we know one part is experiencing a failure mechanism of a certain type and another component is experiencing increasing strain as a result of the damaged part, we can figure out which parts need to be heaviest and which can be lighter."
The researchers hope to complete work to develop the method in less than two years, at which time it could be ready for commercial use.
Study finds adverse impact of bio materials on earthworms
Try to solve one problem and several more occur! Whatever we do harms something somewhere.