According to the team, the flexible and transparent material has a range of potential applications, including use on incubators for newborn babies.
“The idea came to me when I was in the hospital with my son, who was in an incubator,” said Atif Shamim. “I worried about the exposure of the babies to all the electromagnetic radiation in the room.”
Shape-shifting electronics have potential for implants and movable medical sensors
Aquaporins inspire graphene-oxide membrane
While opaque metals are well known for their electrical conductivity, serving as blocks to electromagnetic radiation, they are generally not transparent or stretchable. “We didn’t want to protect the incubators against the radiation by using metal because then we wouldn’t be able to see the infants,” he said in a statement.
There are printed films of metal nanowires in which the conductive metal nanowires are so thin that light can pass between them. According to KAUST it has been challenging to directly create nanowire sheets that simultaneously have high conductivity, high transparency, flexibility and stretchability.
“Now, we have found a solution to this problem,” said Weiwei Li, a postdoctoral researcher in Shamim’s team.
First, the team refined the method for making silver nanowires, adapting the previous protocol to make larger quantities of longer nanowires. The nanowires could be used directly in a new ink formulation that resulted in a uniform layer of silver when applied by screen printing onto a flexible substrate.
Thanks to the length of the nanowires, the team could achieve high conductivity with a relatively sparse covering of nanowires, that in turn improved optical transparency. In a final manufacturing step, the team used laser sintering to weld adjacent nanowires at points of contact: this is said to have improved electrical conductivity further while also reducing the thickness of the silver layer and letting more light pass through. The material maintained its electrical performance even after 1000 stretch-release cycles and 1000 bending cycles.
The team tested their material’s performance by printing the conductive ink in patterns that enabled it to absorb predetermined wavelengths of electromagnetic radiation.
“With the huge number of wireless devices, we are all exposed to electromagnetic radiation all the time,” Li said. “We designed special electromagnetic absorbers using our transparent ink which can absorb more than 90 per cent of the electromagnetic signals in a specific frequency band.”
“We believe that this work will benefit the development of future flexible, transparent and stretchable conductive electronics at low cost and at large scale,” Shamim said.
Other potential applications include radar-absorbing coatings to cover the curved surface of fighter planes, rendering them invisible to radar. The team's work is described in Nature.
UK productivity hindered by digital skills deficit – report
This is a bit of a nebulous subject. There are several sub-disciplines of 'digital skills' which all need different approaches. ...